
Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 1

The Right Action at the Right Time:

Past, Present, and Future Trends
in Real-Time Systems

Mitra Nasri
m.nasri@tue.nl
Assistant professor
Eindhoven University of Technology (TU/e)

CompSys 2023

mailto:m.nasri@tue.nl

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 2

My background: designing real-time systems and verifying their correctness

PhD in 2015 Postdoc: 2015-2016 Postdoc: 2016-2018 Assistant professor
2018-2020

Assistant professor (tenured)
2020-now

Won an Alexander von
Humboldt Fellowship in 2016

Won Delft Technology
Fellowship Award in 2018

Won a DAAD
scholarship in 2013

Co-PI of an NWO project
on scheduling in flexible

manufacturing

Co-PI of an EU-project
on real-time

applications on cloud

Real-time systems
security

Dependable Robotics
on ROS 2

(Robot Operating System)

Design-space exploration
for timing parameters

Timing analysis
Since 2014

Designing scheduling solutions
with predictable performance
Since 2009

Product-lines and
manufacturing systems

embedded
systems

Real-time systems
on cloud

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 3

Real-time systems

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

• A late (or missed) actuation may cause safety violation
• Example: breaking, air-bag inflation, etc.

• Human life
• Environment

4

Correct
response

Functional
correctness

Fast ≠ predictable

Temporal
correctness

Timely
response

Safety Time-predictability

Real-time systems

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Real-time systems
Which one(s) is a
real-time system?

Madlab
• Image processing and object tracking
• Obstacle avoidance

https://www.discovermagazine.com/technology/teaching-robots-to-
be-more-than-simple-servants

Aniwaa (Meltio Engine)
• Path planning and path tracking
• Material manipulation/heating
https://www.aniwaa.com/guide/3d-printers/robotic-arm-3d-
printing-guide/

OKUMA (Load and Go Robot)
• Pick and placement
• Path tracking and obstacle avoidance
https://www.digitaljournal.com/pr/industrial-robotics-market-market-size-
share-trend-covid-19-impact-and-growth-analysis-report-segmented-by-
product-end-user-and-region-analysis-industry-forecast-2022-2027

(A) Deadlines in the order of 10 ms (B) Deadlines in the order of 100 ms (C) Deadlines in the order of 300 ms

5

https://www.discovermagazine.com/technology/teaching-robots-to-be-more-than-simple-servants
https://www.aniwaa.com/guide/3d-printers/robotic-arm-3d-printing-guide/
https://www.digitaljournal.com/pr/industrial-robotics-market-market-size-share-trend-covid-19-impact-and-growth-analysis-report-segmented-by-product-end-user-and-region-analysis-industry-forecast-2022-2027

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Real-time systems
Which one(s) is a
real-time system?

Real-time systems aren’t necessarily “fast”
or have deadlines within few milliseconds!

They are systems that require “predictable timing behavior” or
shall satisfy timing constraints

All of them!
(A) Deadlines in the order of 10 ms (B) Deadlines in the order of 100 ms (C) Deadlines in the order of 300 ms

That are not
easy to satisfy

6

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 7

production printing

Where do the timing constraints come from?
Nature or physics law

Quality of service
requirements

Safety requirements

The chemical
reaction that

inflates the air
bag takes 40ms

Performance
requirements

Print 300 pages
per minute

Airbag should open
from 60 to 100ms

after a collision

It takes 45ms for a
freshly printed paper
to dry enough to be
stacked or flipped

Refresh rate: 30
frames per second

(period = 33ms)

Convoy belt
controller must

execute every 30ms

Translates to timing
constraints of the

submodules

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 8

Where do the timing constraints come from?
Nature or physics law

Quality of service
requirements

Quality of control
requirements

Safety requirements

Performance
requirements

Sampling rate:
2 minutes

Sampling
rate: 20ms

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 9

Where do the timing constraints come from?

Industry standards

Nature or physics law

Quality of service
requirements

Quality of control
requirements

Safety requirements

Performance
requirements

Given specifications for timing of
runnables and their communication:

{1, 2, 5, 10, 20, 50, 100, 200, 1000}ms

[1] Nicolas Navet, “Automotive Embedded Systems Handbook.”
[2] Krammer et al. ,”Automotive benchmark applications for free”.

https://www.panonit.com/blog/autosar-%E2%80%93-leading-standard-automotive-industry

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 10

Agenda

• Where do timing constraints come from?

• What influences the timing behavior of a system?

• Why should we care about it?

• Why the response-time analysis is hard?

• What can we do about it?

• The past, current, and future trends in real-time systems research

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 11

What influences the timing behavior of a system?

ActuatorsSensors

physical/mechanical/electrical part

Network(s)

Operating system
(or libraries)

Scheduler

so
ft

w
ar

e
ha

rd
w

ar
e

Application 1 App. 2 App. 3
time-sensitive applications

Cyber part (a computing node)

Other computing nodes

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 12

discrete

What influences the timing behavior of a system?

The system
being controlled

Environment
(gravity, perturbations, friction, wind, …)

𝑢𝑢(𝑡𝑡)

𝑟𝑟(𝑡𝑡)𝑦𝑦(𝑡𝑡) continuous
Environment

ActuatorsSensors

Operating system
(or libraries)
Scheduler

Control task App. 2While(true)
{

Read input;
Compute control command;
Write output;
Sleep (until the next sampling period);

}

Implementation of the control task

sensor

actuator

𝑦𝑦(𝑡𝑡)

𝑢𝑢(𝑡𝑡)Control-law
computation

A/D

A/D
D/A

𝑟𝑟𝑘𝑘

𝑦𝑦𝑘𝑘
𝑢𝑢𝑘𝑘

Reference input 𝑟𝑟(𝑡𝑡)

Controller logic
(e.g., PID, MPC, etc.)

Controller task

Control task
timeline:

The control task
is released

writeread
compute …

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 13

Control algorithms often are not
prepared to tolerate jitters and
delays between the perception

and actuation moments

Plant timeline:

Control task timeline:

The control task
is released

time

time

time

Ctrl command timeline
(applied via the actuator):

A long delay caused
by a cache miss or a
conditional branch

writeread
compute

The next
observation

Oh my! There should have
been more friction than I
expected!

Go RIGHT! RIGHT!

Failure!

Moments at which the
control command is updated

Should have been
applied long ago

The controller is
unaware of the I/O
delay, so it assumes

the surface has a lot of
friction.

At this moment, the
plant is observed

Not bad! Just slightly go right now.

What influences the timing behavior of a system?

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 14

Common timing constraints

time
Control task 1

time
Control task 2

Job 1 Job 2

I/O delay
Sampling delay

Response-time of job 1 Response-time of job 2

I/O delay
Sampling delay

• Platform: single-core
• Scheduling policy: fixed-priority policy

(task 1 has a higher-priority than task 2)

Response-time constraints Delay constraints Jitter constraints

• Sampling delay
• I/O delay

• Worst-case response time (WCRT) shall
be smaller than the deadline

• Response-time jitter
• Sampling jitter
• I/O jitter

deadline deadline

• Response time = completion time - release time
• Worst-case response-time (WCRT) = largest response time in the lifetime of a task
• Sampling delay = start time – release time
• I/O delay = completion time – start time
• Jitter of X is the difference between the best and worst values of X.

The most
common timing

constraint

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Sensing Computation

Actuation

33 ms

Period: 100 ms

100 ms

10 ms

100 ms

100 ms

33 ms

100 ms
100 ms 100 ms 100 ms 10 ms

Today’s systems have more complex timing constraints

15

S. Liu, B. Yu, N. Guan, Z. Dong, and B. Akesson. 2021. RTSS 2021 Industry Session. http://2021.rtss.org/industry-session/

Data dependency

Data fusion

Observations should be from ‘the same time’,
otherwise they might be irrelevant/inconsistent.

The end-to-end response-time of each task chain
shall be smaller than the chain’s deadline

Each task shall finish
before its next activation

(deadline ≤ period)

15

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 16

Importance and prevalence of timing constraints in industry

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

More than 100
real-time systems

practitioners

Mitra NasriBenny Akesson Rob DavisGeoffrey Nelissen Sebastian Altmeyer

A Comprehensive Survey of Industry
Practice in Real-Time Systems

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 17

Importance and prevalence of timing constraints in industry

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

In 80% of real-time systems, the end-to-end response
time is very important or important

More than 100
real-time systems

practitioners

Industry

Timing predictability comes right after system’s safety!

In more than 70% of real-time systems, timing
predictability is very important or important.

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 18

What impacts the response time of a task?

Operating Systems 1 OS 2

Hypervisor/VM

Application 1 Application 2 Applicatio
n 3

So
ft

w
ar

e

Resource orchestrator

SchedulerScheduler

• Processors
• Busses
• Peripherals
• Memory

Development board

H
ar

dw
ar

e

The execution time of the task

Scheduling policy and
interferences from other tasks

Resource assignment, orchestration,
and management policy

Concurrent execution of other tasks
on the hardware platform

Related to the application
and hardware platform

Related to the operating system,
virtualization, and communication

Data communication (and
synchronization) overheads

• inside a computing node
• between computing nodes
• over networks

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 19

What impacts a task’s execution time?
While(true)
{

int temp = readTemperature();
if (temp > 42)

send(-1);
else
{

int * array = read10Data();
int max = -1;
for (int i=0; i < 10; i++)

if (max < 0 || array[i] > max)
max = array[i];

send(max);
}
sleep (100, ms);

}

Software aspects
• Input value
• Program path (branches)
• Number of iterations in the loop

Hardware aspects
• Cache misses
• Branch predictors
• Out-of-order execution
• Interference on the bus or memory banks
• Resolution of hardware timer
• Context switch overheads

Task’s code

Finding the worst-case execution time
(WCET) is a long-lasting open problem

[1] Reinhard Wilhelm, et al., “The worst-case execution-time problem—overview of methods and survey of tools,” ACM Transactions on Embedded Computing Systems 7, 3, Article 36, 2008.

It is somehow addressed for single-core platforms [1]

There is barely any ‘safe’ solution for multicore platforms

Hardware technologies heavily
influence the analysis of WCET

Difficult to catch up with
the advancement of the

hardware technology

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 20

How execution time of one task is affected by co-runners?

Co-runners compete on accessing shared caches, I/O devices,
memory bus, memory banks, and memory controllers

Co-running tasks run concurrently
on a multi-core/multi-processor platform

Cache-related preemption delay (one core):

If there was no preemption,
this was a cache hit

Cache

A

Read B
(B is loaded into

cache and replaces A)

B

read A
(Cache miss)

write A
(A is loaded
into cache)

read A
(Cache hit)

Task 1
(high priority)

Task 2
(low priority)

L. Sha, M. Caccamo, R. Mancuso, J. Kim, M. Yoon, R. Pellizzoni, H. Yun, R. Kegley, D. Perlman, G.
Arundale, R. Bradford, “Single Core Equivalent Virtual Machines for Hard Real—Time Computing
on Multicore Processors,” 2014.

Lockheed Martin Space Systems
Testbed on an 8-core Freescale P4080

Competing with
another core doubles

the execution time

Critical software can be
slowed by up to 6X if

uncontrolled

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 21

How execution time of one task is affected by co-runners?

Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on
Shared Cache in Multicore: Analysis and Prevention. Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

Co-running tasks run concurrently
on a multi-core/multi-processor platform

RTAS’19 best-paper award shacked the state of the art

Co-running tasks can easily slowdown another task by
a factor of 300 (on a 4-core platform [Raspberry PI])

just by stressing the memory controller!

Parallelizing applications on multicores may
result in slowing the system down

(regardless of the granularity of parallelization)

Co-runners compete on accessing shared caches, I/O devices,
memory bus, memory banks, and memory controllers

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 22

Finding the worst-case execution time
Static timing analysis (STA)

(to derive safe upper bounds on WCET)

Obtain the control-flow
diagram

Add the worst-case latency
of each instruction

e.g., worst-case cache and memory access latencies,
worst-case number of iterations of a loop, …

Measurement-based timing analysis (MBTA)
(measure WCET under normal and stressed scenarios)

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

Industry

Measurement-based timing analysis using in-house
tools or ad-hoc measurements is the common way of

obtaining WCET estimates in industry

• It is often fast
• It does not need knowledge of hardware or code
• It is more representative for actual execution times

• It requires the system to be built
• Measurements may not be representative

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 23

Impact of scheduling policy on a task’s response time

Operating Systems 1 OS 2

Hypervisor/VM

Application 1 Application 2 Applicatio
n 3

So
ft

w
ar

e

Resource orchestrator

SchedulerScheduler

• Processors
• Busses
• Peripherals
• Memory

Development board

H
ar

dw
ar

e

Scheduling strategies

Table-driven schedulingOnline scheduling

AvionicsAutomotive and
consumer electronics

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 24

How does scheduling impact a task’s response time?
Table-driven scheduling

• Easy to respect the timing constraints
(correct by construction)

• Allows further optimization of the schedule
• Low runtime overhead

• Requires a lot of memory
• Often not robust against unexpected deviations
• Does not use system resources efficiently

Stores the entire schedule of the system in a table in memory
to be repeatedly followed during the system’s life-time.

ScheduleConstraints to respectOptimization objectives

Task 1

Task 2

Running

Running

time

…
Job 1 Job 2 Job 3

Job 2Job 1

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 2 1 1 2 2 1 1

slot
task

Task finished
earlier at runtime

Some solutions to improve memory consumption of table-driven scheduling:
• Mitra Nasri and Björn B. Brandenburg, "Offline Equivalence: A Non-Preemptive Scheduling Technique for Resource-Constrained Embedded Real-Time Systems”, RTAS, 2017, Outstanding Paper Award.

[paper | slides | companion page]
• Mitra Nasri, Robert I. Davis, and Björn B. Brandenburg, "FIFO with Offsets: High Schedulability with Low Overheads,” RTAS, 2018.

https://www.es.ele.tue.nl/%7Em.nasri/papers/rtas17m.pdf
https://www.es.ele.tue.nl/%7Em.nasri/papers/Nasri_RTAS17_Offline_Equivalence_Slides.pdf
https://people.mpi-sws.org/%7Ebbb/papers/details/rtss17/index.html

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 25

How does scheduling impact a task’s response time?

Release time DeadlineExecution

Dispatch

Task completion

Preemption or
suspension

Ready queue

Scheduler

Pending queue

Online scheduler
Task activation

(release)

…

CPU1

CPU2

Online scheduling

Task 1

Task 2

Running
Preemption

Release/activation Completion

Running

time

Job 1 Job 2

Job 2Job 1

Scheduling strategies

Table-driven
scheduling

Online
scheduling

Job-level fixed-priority
scheduling

Dynamic-priority
scheduling

Examples: least laxity first, shortest
remaining execution time first, …

Task-level fixed-task
priority scheduling

(Fixed-priority scheduling) Examples: Earliest-deadline first
(EDF), First-in-first-out (FIFO), …

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 26

Task 1

Task 2

Task 3
deadline

Impact of scheduling policy on a task’s response time

Deadline miss miss miss

Release time DeadlineExecution

Dispatch Task
completion

Preemption
or suspension

Ready queue

Scheduler

Pending queue

Online scheduler
Task

activation
(release)

…

CPU1

CPU2

Well-known online scheduling policies:
• First-in-first-out (FIFO or FCFS)

time

Low runtime overhead

Minimizes the I/O delay
(via non-preemptive execution)

Low success in respecting timing constraints
(has no notion of deadline or priority)

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 27

high

low

medium

Task 1

Task 2

Task 3
Deadline miss

deadline

Relatively low
overhead

Minimizes the sampling and I/O
delay of the highest-priority task

Imposes preemptions and hence
context switch overheads

Poor support for timing
constraints of low-priority tasks

Its effectiveness highly depends on task
periods and execution times

If a high-priority task is very long, other
low-priority but frequent tasks may miss
their deadlines

Impact of scheduling policy on a task’s response time

Priority:

Well-known online scheduling policies:
• First-in-first-out (FIFO or FCFS)
• Fixed-priority scheduling

Dispatch Task
completion

Preemption
or suspension

Ready queue

Scheduler

Pending queue

Online scheduler
Task

activation
(release)

…

CPU1

CPU2

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 28

Task 1

Task 2

Task 3
deadline

Rather high runtime overhead
(needs a sorted queue)

Optimal w.r.t. meeting deadlines
(only on single-core platforms, …)

Imposes preemptions and hence
context switch overheads

Not optimal on multi-core platforms or in the presence of
context switch and precedence constraints

Does not minimize I/O or
sampling delays

Impact of scheduling policy on a task’s response time
Well-known online scheduling policies:
• First-in-first-out (FIFO or FCFS)
• Fixed-priority scheduling
• Earliest-deadline first (EDF)

time

Dispatch Task
completion

Preemption
or suspension

Ready queue

Scheduler

Pending queue

Online scheduler
Task

activation
(release)

…

CPU1

CPU2

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 29

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

Industry

Fixed-priority scheduling and table-driven scheduling are common in industry.

Systems may use different scheduling policies in different parts/nodes

Scheduling policies used in industrial real-time systems

Supported by Linux
(Sched_DEADLINE),

used in Androids

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 30

Impacts of the virtualization platform on a task’s response time
• Identifying available resources (cores, memory, …)

• In embedded systems, resources are static and known in advance

• Mapping
• Mapping of tasks to components (reservation servers)
• Mapping of reservation servers to [hardware] resources
• Dynamic mapping v.s. static mapping

• Configurations
• Server’s type, period, budget, budget-update function

Operating Systems 1 OS 2

Hypervisor/VM

Application 1 Application 2 Application
3

So
ft

w
ar

e

Resource orchestrator

SchedulerScheduler

• Processors
• Busses
• Peripherals
• Memory

Development board

H
ar

dw
ar

e

In cloud platforms, resources (CPUs and memory) can be dynamic
• Runtime monitoring is needed

• Checking resource availability
• Resource scaling (trade-off between performance, timing

constraints, and costs)

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 31

The cornerstones of
real-time systems’ design

• Model-based timing analysis

• Model-based design

• Runtime and design-time
techniques for timing predictability

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 32

How to design/develop time-predictable systems?

Safe bounds on the
worst-case response-time

of each task (or task chains)

Workload model
(timing features of the workload)

Resource model

CPU

Scheduling policies
(resource management)

Response-time
analysis

System (re)design

(Re)configurations of
resources, policies,
and tasks

Aren’t good enough?

Aren’t good
enough?

Runtime techniques to
enforce timing predictability

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 33

How to assess if a system meets its timing constraints?

Safe bounds on the
worst-case response-time

of each task (or task chains)

Workload model
(timing features of the workload)

Resource model

CPU

Scheduling policies
(resource management)

Response-time
analysis

System (re)design

(Re)configurations of
resources, policies,
and tasks

Aren’t good enough?

Runtime techniques to
enforce timing predictability

Aren’t good
enough?

The simplest form of the response-time
analysis problem is NP-Hard!
• periodic tasks
• fixed-priority scheduling policy
• single-core platform

[1] . Eisenbrand et al. “Static-Priority Real-Time Scheduling: Response Time Computation Is NP-Hard,” 2008.
[2] F. Eisenbrand et al. “EDF-schedulability of synchronous periodic task systems is coNP-hard,” 2010.

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

A closer look at the response-time analysis problem
One of the simplest forms of the problem:

Response-time analysis problem

Given
- a set of non-preemptive tasks/jobs (with a given arrival interval, execution time, and deadline)
- scheduled by a fixed-priority scheduling policy
- on a single-core platform,

Determine
the worst-case response time of each job

0𝐽𝐽2 30

10𝐽𝐽4 time20

𝐽𝐽1 100

Release jitter

0 15
𝐽𝐽3 30

Release jitter

Uncertainty in
execution time

Priorities are decided by
the scheduling policy

Earliest
release time

Latest
release time

BCET WCET

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝐽1 0 0 10 1 2 high

𝐽𝐽2 0 0 30 7 8 medium

𝐽𝐽3 0 15 30 3 13 low

𝐽𝐽4 10 10 20 1 2 high

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Earliest
release time

Latest
release time

BCET WCET

Goal: find the worst-case response time of each job
(for any imaginable schedule that is generated by a fixed-priority scheduling policy on one core)

Q: Why can’t we “simulate” one schedule using a discrete-event
simulator and see if there will be a deadline miss?

A closer look at the response-time analysis problem

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝐽1 0 0 10 1 2 high

𝐽𝐽2 0 0 30 7 8 medium

𝐽𝐽3 0 15 30 3 13 low

𝐽𝐽4 10 10 20 1 2 high

0𝐽𝐽2 30

10𝐽𝐽4 time20

𝐽𝐽1 100

Release jitter

0 15
𝐽𝐽3 30

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝐽1 0 0 10 1 2 high

𝐽𝐽2 0 0 30 7 8 medium

𝐽𝐽3 0 15 30 3 13 low

𝐽𝐽4 10 10 20 1 2 high

Execution scenario 1: jobs are released very late
and have their largest execution time.

No deadline miss

0𝐽𝐽2 30

10𝐽𝐽4 time20

𝐽𝐽1 100

15
𝐽𝐽3 30

2
2

2 10
8

12
2

28
13

Deadline miss for 𝑱𝑱𝟒𝟒

0𝐽𝐽2 30

10𝐽𝐽4 time20

𝐽𝐽1 100

0
𝐽𝐽3 30

1
1

1 9
8

24 26
2

24
13

9

Execution scenario 2: jobs are released very early and
have their largest execution time except for 𝐽𝐽1.

How should we find such a
worst-case scenario?

0𝐽𝐽2 30

10𝐽𝐽4 time20

𝐽𝐽1 100

Release jitter

0 15
𝐽𝐽3 30

A closer look at the response-time analysis problem

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Naively enumerating all possible combinations of release times and
execution times (a.k.a. execution scenarios) is not practical

A closer look at the response-time analysis problem

1200 different combinations for
release times and execution times

for a job set with 4 jobs!

State of the art on response-time analysis

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

State of the art on response-time analysis
Fixed-point iteration-based analyses

• Fast • Pessimistic
• Limited to periodic/sporadic arrival patterns
• Hard to extend

[ISORC’17]: Serrano et al., “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG Based Global Fixed Priority Scheduling”, ISORC, 2017.
Schedulability ratio = success ratio of an analysis to detect task sets that respect their timing constraints

Longest blocking

Where has it taken us?

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
he

du
la

bi
lit

y
ra

tio

utilization

[ISORC’17]

Experiment: limited-preemptive scheduling of parallel DAG tasks
Setup: 16 cores, 10 periodic DAG tasks

We don’t know if these task sets
respect their timing constraints

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Exact analyses in generic formal
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend

• Not scalable
• Prone to model infidelity

(modeling mistakes)

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27

sc
he

du
la

bi
lit

y
ra

tio

number of tasks

4 cores, 30% utilization

Time outs

0

1,000

2,000

3,000

4,000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

ru
nt

im
e

(s
ec

)

number of tasks

8 cores

4 cores

2 cores

1 core

Setup: sequential non-preemptive periodic tasks scheduled by global fixed-priority scheduling policy (FP)

State of the art on response-time analysis

Where has it taken us?

There is a need for generalizable, accurate,
and scalable response-time analysis

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

𝐽𝐽1 𝐽𝐽2 𝐽𝐽4
𝐽𝐽3

𝐽𝐽3 𝐽𝐽4

𝐽𝐽2

10𝐽𝐽4 time20

𝐽𝐽1 10

0𝐽𝐽3 30

2

10

12
21

Example for path

miss

𝐽𝐽2

10𝐽𝐽4 time20

𝐽𝐽1 10

0𝐽𝐽3 30

1

9

26
24

Example for path

Naively enumerating all possible combinations of release times and
execution times (a.k.a. execution scenarios) is not practical

Our observation:

There are fewer permissible
job orderings than schedules

• 2 possible job ordering
• 1200 different combinations for release times and execution times

A closer look at the response-time analysis problem
1200 different

combinations for release
times and execution times
for a job set with 4 jobs!

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Naively enumerating all possible combinations of release times and
execution times (a.k.a. execution scenarios) is not practical

Our observation:

There are fewer permissible
job orderings than schedules

We use job-ordering abstraction to build a
graph that abstracts all possible schedules

Solution idea:

It is called the “schedule-abstraction graph”

Goal: an accurate and
efficient analysis

A closer look at the response-time analysis problem

Mitra Nasri – Reachability-based response-time analysis: motivation, challenges, and open problems42

Pruning
Merging

Partial-order reduction

Response-time
bounds

Workload model
(timing features of the workload)

Scheduling policy
(job-level fixed-priority policies)

3000 times faster than
generic verification tools (e.g., UPPAAL)

Schedule-abstraction graph in a nutshell

Many top-rank conference papers
[RTSS’17, ECRTS’18, ECRTS’19, DATE’19, RTSS’20, RTSS’21, RTAS’22 (best-paper award), RTNS’22, ECRTS’22]
Open-source implementation: https://github.com/gnelissen/np-schedulability-analysis

In our RTAS’22 work, we made it
5 orders-of-magnitude faster

using partial-order-reduction

Resource model

CPU

Schedule-abstraction graph
(a reachability-based response-time

analysis framework)

(it is a formal verification engine
dedicated to timing models and

timing properties)

https://github.com/gnelissen/np-schedulability-analysis

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 43

Possible system’s
decisions (actions)

at state v

v

Our solution is a reachability analysis that

resource 1:
recourse 2:

10 30

15 20

uncertainty
interval:

Possibly
available

Certainly
not available

Certainly
available

New system state
after action A

A

B

C

• Uses uncertainty intervals to combine uncertainties in the platform and task activation patterns
• Merges states whose future is similar
• Does not explore paths that do not contribute to the worst-case behavior

Initial state

Possible system state
after action A

This work is in collaboration with the IRIS group (M&CS)

How does it work?

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 44

Handling uncertainty
Expansion rules imply the

scheduling policy

resource 1:
resource 2:

10 30

15 20

State 𝒗𝒗𝒊𝒊
Next states

J1

J2

8 25
J2 Medium priority

17 30
J1 High priorityAvailable jobs

(at the state)

35 40
J3 Low priority

𝑣𝑣𝑖𝑖

[ECRTS’2018]

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Taste of results: sequential tasks (global scheduling)

Almost as accurate as the
exact test

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27
sc

he
du

la
bi

lit
y

ra
tio

number of tasks

4 cores, 30% utilization

Our solution
(no timeout)

Exact test
(UPPAAL)

Timeouts
(exact test)

Yet, 3000 times faster

[Exact test] Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg, "An Exact Schedulability Test for Non-Preemptive Self-Suspending Real-Time Tasks", DATE, 2019.
[ISORC’17] M. Serrano, et al., “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-Based Global Fixed Priority Scheduling”, ISORC, 2017.
[Our solution] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg, “A Response-Time Analysis for Non-preemptive Job Sets under Global Scheduling,” ECRTS, 2019.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
he

du
la

bi
lit

y
ra

tio

utilization

this paper (m=16) Serrano (m=16)Our solution (16 cores) [ISORC’17] (16 cores)

3.5 times more successful
(in determining whether a system

meets its timing constraints)

Comparison to the fixed-point
iteration-based methods

Comparison to UPPAAL

Mitra Nasri – Reachability-based response-time analysis: motivation, challenges, and open problems46

The cornerstones of
real-time systems’ design

• Model-based timing analysis

• Model-based design

• Runtime and design-time
techniques for timing predictability

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 47

Designing for timing predictability

Monitoring timing behavior

Building more time-predictable
SW/HW components or networks

Runtime techniquesDesign-time techniques

Hardware
oriented

OS oriented

Application
oriented

Network
oriented

(Re)configuring existing [COTS]
components for better predictability

Analyzing a given COTS component to
obtain its worst-case timing behavior

Enforcing time-predictive
behavior

Runtime verification
(ensuring correct timing behavior)

General trends General trends

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 48

Code
refactoring

Application-oriented techniques for timing predictability

LET model

Elastic scheduling
(handle overloads by

adjusting task periods)

Era of imprecise-
computing model

Multi-mode
tasks

Timing and response-
time analysis of

multi-mode tasks

Anytime
algorithms

Analyzing ROS2
middleware

Node-priority
assignment for

ROS2 applications

Solutions and techniques

Analyses

Analyzing
multi-rate

tasks

Using watchdog
timers or runtime

monitors

Using time-predictable
programming languages such

as Ada, TimedC, Real-Time
Concurrent C

Trading execution time
and quality Trading period and quality

Developing more time-predictable
applications Multi-rate task graphs

Analyzing data
age for LET tasks

1980s

Research trends

1995
2000

2010
2018

2023 End-to-end
data age
analysis

Period
assignment to
improve QoC

Analyzing ROS1
middleware

Multi-rate
task graphs

Real-time applications for
edge and cloud

Time-predictable robotics
via ROS2

Future trends

Time-predictable
DNN

Harmonic
periods

Multi-rate task graphs:
larger and complex timing

constraints

Time-predictable AI

[1] Björn Brandenburg and Tobias Blaß works on ROS 2 Response-Time Analysis.
[2] Mitra Nasri works on assigning harmonic periods
[3] Enrico Bini, Morteza Mohaqeqi, Anton Cervin, Karl-Erik Arzen, and Mitra Nasri works on assigning period values to improve quality of control.
[4] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeniet al., “Elastic Scheduling for Flexible Workload Management,” 2002.
[5] Seminal papers: https://cmte.ieee.org/tcrts/education/seminal-papers/
[6] Cong Liu works on time-predictable DNN
[7] Mathias Becker, Dakshina Dasari, Daniel Cassini, and Mitra Nasri works on the analysis of multi-rate task graphs.

PREM
model

Geoffrey Nelissen
(TU/e)

Dakshina Dasari
(Bosch)

Available during the
CompSys industrial panel.

Ask me or them about
ROS and Task Graphs

https://cmte.ieee.org/tcrts/education/seminal-papers/

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 49

Analyzing
resource-access

protocols

Response-time
analysis parallel tasks

(multicore)

Separating top-half from
bottom-half of the interrupt

service routineThe golden era of servers:
periodic servers, deferrable

servers, constant-
bandwidth servers

PREEMPT_RT
(Linux)

Operating-System-oriented techniques for timing predictability

EDF

Response-time
analysis (multicore)

Fixed-priority
scheduling

Utilization-based tests for
FP and EDF (single-core)

Scheduling policies
and RTOSes

Reservation-based
scheduling

Resource-access protocols (Priority
Ceiling, Priority Inheritance, MrsP)

Better interrupt service
routines and timers

1960s

Research trends

1973
2000

2010
2018

2023

Resource orchestration in
edge and cloud

Response-time analyses for
generic scheduling problems

Future trends

Better non-preemptive
scheduling policies

Reachability-based
response-time analysis

1990s

Analyzing non-
preemptive scheduling

policies
Fixed-point iteration-

based analyses
(single-core)

Speedup factor
(multicore)

2013

Gang-task
scheduling

FreeRTOS

Reducing timer
latencies

[1] Seminal papers: https://cmte.ieee.org/tcrts/education/seminal-papers/
[2] F. Reghenzani, et al. “The Real-Time Linux Kernel: A Survey on PREEMPT_RT,” 2019.
[3] N. C. Audsley, et al., “Fixed Priority Scheduling: A Historical Perspective”, 1995.
[4] L. Sha, et al., “Real-Time Scheduling Theory: A Historical Perspective”, 2004.
[5] K. Jeffay and D. L. Stone, “Accounting for interrupt handling costs in dynamic priority task systems,” 1993.
[6] C. Mercer, S. Savage, and H. Tokuda, “Temporal protection in real-time operating systems” 1994.

Response-time
analyses

Response-time
analysis of Gang

tasks

[7] L. Abeni and G. C. Buttazzo, “Resource Reservation in Dynamic Real-Time Systems,” 2004.
[8] Herman Kopetz, Gerhad Fohler: Time-Triggered Scheduling and slot shifting
[9] L. Sha, R. Rajkumar, and J. P. Lehoczkyet al., “Priority Inheritance Protocols: An Approach to Real-Time Synchronization,” 1990.
[10] R.I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems,” 2011.
[12] M. Nasri works on Schedule-Abstraction Graph (reachability-based response-time analyses)
…

PI protocolSolutions and techniques

Analyses

Static
scheduling

RTEMS and
RTLinux Policing/orchestrating

Memory and I/O Bandwidth,
and GPU access

management

Time-predictable resource-
access mechanisms

https://cmte.ieee.org/tcrts/education/seminal-papers/

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 50

Better analysis of cache-related
preemption delays for known

scheduling policies

[1] R. Wilhelm, et al., “The worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems, 2008.
[2] T. Hiroyuki and N. Dutt, “Program path analysis to bound cache-related preemption delay in
preemptive real-time systems," International workshop on Hardware/software codesign, 2000.
[3] S. Altmeyer and C. Maiza, “Cache-related preemption delay via useful cache blocks: Survey
and redefinition,” Journal of Systems Architecture, 2011.
[4] J. Xiao, Y. Shen, A. Pimentel , “Cache Interference-aware Task Partitioning for Non-preemptive
Real-time Multi-core Systems,” ACM TECS, 2022.

[5] A. Rashid, G. Nelissen, and E. Tovar, "Tightening the CRPD bound for multilevel non-inclusive caches., Journal of Systems Architecture, 2022.
[6] Works of Marco Caccamo, Rodolfo Pelizzoni, and Renato Mancuso on MemGaurd, works of Kees Goossens on CompSoc, works of Jim Anderson on
GPUs, PhD thesis of Mohamed Hassan, Heechul Yun, and Benny Akesson on predictable memory controllers and DRAM, …
[7] M. Hassan, “On the Off-chip Memory Latency of Real-Time Systems: Is DDR DRAM Really the Best Option”, RTSS, 2018.
[8] P. Sohal, R. Tabish, U. Drepper, R. Mancuso, “Profile-driven memory bandwidth management for accelerators and CPUs in QoS-enabled platforms,”
Real-Time Systems, 2022.
[9] M. Bechtel and H. Yun, “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors,” 2023.
[10] S. Osborne, “Simultaneous Multithreading and Hard Real Time: Can it be Safe?” 2020.

Research trends
1998

2000

2010
2021

2023

Cache
coloring

Hardware-based
cache partitioning

Better analysis of cache-
latencies using abstract-

interpretation and
reachability analysis

Reducing CRPD via
non-preemptive

scheduling

Interference-aware
cache and memory

partitioning

Recognition of cache-
related preemption

delays (CRPD)

Better analysis of
memory-access latencies

Designing time-predictable
memory controllers

The effect of in-order and
out-of-order processor

architectures

Hardware-oriented solutions for timing predictability
More accurate estimation of cache- and

DRAM-related latencies of COTS hardware

Controlling interference through
resource-access orchestration

Building more time-predictable cache,
memories, and memory controllers

Timing surprises in NVIDIA GPUs
(a reverse-engineering approach)

GPU management for
timing predictability

Analyzing the impact of
parallel execution on

WCET of each task

Future trendsSolutions and techniques

Analyses

Analyzing
simultaneous

multi-threading

Scratchpad
memories

ARM, Intel, and NVIDIA
are already integrating it
in their current platforms

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 51

Response-time analysis
of CAN networks

Time-predictable networking

Research trends

1995
2000

2011 2012 2016

2023

[1] Follow up on:
• Ramon Serna Oliver, Silviu Cracionas, and Hermann Kopetz: TT-Ethernet
• Ramon Serna Oliver, Silviu Cracionas, Mohammad Ashjaei, Luis Almeida, Frank Durr: TSN
• K. Tindell, A. Burns, and A. Wellings, R. Davis, R. Brill: analysis of CAN networks
• Lothar Thiele and Tarek Abdelzaher: real-time wireless sensor networks and wireless HEART
• Paup Pop, Petro Eles: Flexray analysis

[2] S. Craciunas, et al., “Scheduling real-time communication in IEEE 802.1 Qbv time sensitive networks,” 2016. (over 400 citations)
[3] S. Craciunas, et al., “An overview of scheduling mechanisms for time-sensitive networks”, 2017.
[4] J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, “Real-time communication and coordination in embedded sensor networks,” 2003.
[5] S. Serna Oliver, et al., “SMT-based task-and network-level static schedule generation for time-triggered networked systems,” 2014.
[6] S. Craciunas, et al., “Optimal static scheduling of real-time tasks on distributed time-triggered networked systems”, 2014.
[7] L Deng et al., “A survey of real-time ethernet modeling and design methodologies: From AVB to TSN,” 2022.
[8] V Gavriluţ et al., “Constructive or optimized: An overview of strategies to design networks for time-critical applications, “ 2022.
[9] T Pop, P Pop, P Eles, Z Peng, A Andrei, ”Timing analysis of the FlexRay communication protocol,” 2008.

Credit-based shaping in time-
sensitive networking (TSN)

Shaping mechanisms
in networks

1980s

Configuring
TSN

Analyzing
TSN Time-predictable IoT

End-to-end analysis of
heterogeneous networks

SMT-based task-and
network-level static
schedule generation

for TTEthernet

Traffic planning
for TSN

Analyzing end-to-end response time
in networked real-time systems

(CAN, LIN, Flexray, Ethernet, TTEthernet, TSN)

Generating optimal routes and static schedules
and configuring network components

CAN, Flexray, Ethernet,
TTEthernet, AFDX, TSN

TSN

SDN for real-time
systems

2006

CAN

Response-time and
parameter assignment

for Flexray

TTEthernet

Wireless
HEART

Flexray
TSN

AFDX

Configuring
AFDX

Abbreviations
• Full-Duplex Switched Ethernet (AFDX), main target: avionics (Airbus)

• Bandwidth guarantee for real-time applications + dual redundant channel for reliability
• Controller Area Networks (CAN): main target: automotive and manufacturing
• Flexray: a time-triggered protocol based on TDMA
• Time-Triggered Ethernet (TTEthernet)
• Time-Sensitive Networking (TSN)
• Software-Defined Networking (SDN)

Response-time
analysis of AFDX

Future trendsSolutions and techniques

Analyses

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 52

Time-predictability techniques used in industry

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

Industry

Application

Application

Application

OS-level

OS-level

Hardware-level

Hardware-level

Hardware-level

Hardware-level
Hardware-level

Hardware-level
Hardware-level

Hardware-level

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems 53

Future trends in industry

The use of heterogeneous multi-cores with different
types of CPUs, GPUs, and other accelerators:The use of heterogeneous multi-cores (2 to 16 cores):

+85% of new developments
by 2024 will use multicore

70% of new developments will use
heterogeneous MPSoC by 2024

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, "A Comprehensive Survey of Industry Practice in Real-Time Systems," Real-Time Systems Journal (RTS), Springer, 2021.

IndustryUse of multicore and MPSoC

Mitra Nasri CompSys 2023 Past, present, and future trends in real-time systems

Questions

Real-time applications on
edge and cloud

Time-predictable robotics via
ROS2 (robotic operating system)

Multi-rate task graphs: larger
and complex timing constraints

Time-predictable AI

Generic frameworks for
response-time analyses

Time-predictable resource-
access/management

Controlling interference through
resource-access orchestration Time-predictable IoT

TSN

SDN for real-time systems

Future trends

Application-oriented solutions

OS-oriented solutions

Hardware-oriented solutions

Network-oriented solutions

Mitra Nasri
m.nasri@tue.nl
Assistant professor
Eindhoven University of Technology (TU/e)

Policing/orchestrating
Memory Bandwidth, I/O, GPU

management

Real-time systems community:
• RTSS, RTAS, ECRTS, RTNS, RTCSA, EmSoft, Date (E2 topic), DAC
• ACM SigBed
• IEEE TCRTS

mailto:m.nasri@tue.nl

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Where do the timing constraints come from?
	Where do the timing constraints come from?
	Where do the timing constraints come from?
	Agenda
	What influences the timing behavior of a system?
	What influences the timing behavior of a system?
	What influences the timing behavior of a system?
	Common timing constraints
	Today’s systems have more complex timing constraints
	Importance and prevalence of timing constraints in industry
	Importance and prevalence of timing constraints in industry
	What impacts the response time of a task?
	What impacts a task’s execution time?
	How execution time of one task is affected by co-runners?
	How execution time of one task is affected by co-runners?
	Finding the worst-case execution time
	Impact of scheduling policy on a task’s response time
	How does scheduling impact a task’s response time?
	How does scheduling impact a task’s response time?
	Impact of scheduling policy on a task’s response time
	Impact of scheduling policy on a task’s response time
	Impact of scheduling policy on a task’s response time
	Scheduling policies used in industrial real-time systems
	Impacts of the virtualization platform on a task’s response time
	The cornerstones of �real-time systems’ design
	How to design/develop time-predictable systems?
	How to assess if a system meets its timing constraints?
	A closer look at the response-time analysis problem
	A closer look at the response-time analysis problem
	A closer look at the response-time analysis problem
	A closer look at the response-time analysis problem
	State of the art on response-time analysis
	State of the art on response-time analysis
	A closer look at the response-time analysis problem
	A closer look at the response-time analysis problem
	Schedule-abstraction graph in a nutshell
	How does it work?
	Handling uncertainty
	Taste of results: sequential tasks (global scheduling)
	The cornerstones of �real-time systems’ design
	Designing for timing predictability
	Application-oriented techniques for timing predictability
	Operating-System-oriented techniques for timing predictability
	Hardware-oriented solutions for timing predictability
	Time-predictable networking
	Time-predictability techniques used in industry
	Future trends in industry
	Slide Number 54
	Some other interesting topics
	Future trends in industry: ROS
	Future trends in industry: Cloud
	Future trends in industry: Cloud
	Future trends in industry: Cloud
	Future trends in industry: TSN
	Real-time systems security
	Some other interesting topics
	Non-blocking cache
	Shared cache blocking
	Threat model
	Design of the experiment
	Results

